
Phase equilibria and thermal stability of CuMo_{1-x}W_xO₄ and CuW_{1-y}Mo_yO₄ in the CuMoO₄–CuWO₄ system

Elżbieta Tomaszewicz¹ and Elżbieta Filipek

West Pomeranian University of Technology, Department of Inorganic and Analytical Chemistry, Al.Piastów 42, 71-065 Szczecin, Poland tomela@zut.edu.pl

The increasing interest in discovering of new energy sources during the last decades has greatly stimulated scientific research in finding new renewable sources of energy. In the field of energy conversion, photovoltaic batteries (conversion of a light into electricity) and electrochemical cells (intraconversion of chemical and electrical energy) have traditionally been investigated. Recently, batteries with high energy and power density as well as miniaturized sizes are wanted with larger interest and specialized applications for microcells (e.g. integrated power supplies for microelectromechanical systems). Nowadays, all efforts are focused on fabrication and investigations of so-called 3-dimentional solid-state lithium batteries. The solidstate cells with Li/LiPON (Lithium Phosphorous Oxonitride)/CuWO₄ layers show high-volume rate capacity and overcome unfavorable electrochemical degradation in liquid electrolyte [1]. The thin film of copper tungstate could be a promising positive electrode material for highperformance rechargeable lithium batteries [1]. CuWO₄ belongs to the triclinic distorted wolframite type crystals (s.g. P1) [2]. The CuWO₄ structure can be described as the hexagonal close-packed framework of oxygen ions with copper and tungsten ions occupying half of the octahedral sites [2]. Copper molybdate, CuMoO₄, shows thermochromism in the 175-260 K range depending strongly on the heating/cooling rate [1]. A several CuMoO₄ polymorphs have been reported, i.e. α -CuMoO₄ (s.g. P1) stable under ambient conditions, high temperature polymorphs β -CuMoO₄ and ϵ -CuMoO₄ (s.g. $P2_1/n$), γ -CuMoO₄ (s.g. $P\overline{I}$) existing below 200 K, as well as CuMoO₄-II and CuMoO₄-III, both high pressure modifications [3,4].

Interesting properties of copper molybdate and tungstate have motivated us to an investigation of their mutual reactivity in the solid state. For this purphose, CuMoO₄/CuWO₄ mixtures with different contents of initial reactants were prepared and heated in air at selected temperatures form the 823–1073 K range. The XRD results showed the existence of two solid solutions, i.e. CuMo_{1-x}W_xO₄ (where 0 < x < 0.10) crystallizing in the α -CuMoO₄ structure and CuW_{1-y}Mo_yO₄ for 0 < y < 0.35 crystallizing in the distorted wolframite structure. DTA-TG measurements in air showed that CuMoO₄ and CuMo_{1-x}W_xO₄ solid solution melt at ~1064 K and the resulting liquid immediately decomposes. Copper tungstate and CuW_{1-y}Mo_yO₄ solid solution melt in air at ~1223 K or and, analogously as for CuMo_{1-x}W_xO₄, the resulting liquid decomposes. Melting point of all phases significantly moves

down in an inert atmosphere.

- [1] L.Chi-Lin, F.Zheng-We, *Electrochim. Acta* 53 (2008) 4293
- [2] L.Kihlborg, E.Gebert, Acta Cryst. B26 (1970) 1020
- [3] A.E. Thiry, M. Gaudon, C. Payen, N. Daro, J.F. Letard, S. Gorsse, P. Deniard,
- X. Rocquefelte, A. Demourgues, M.H. Whangbo, S. Jobic S, Chem. Mater., 20 (2008) 2075
- [4] J. Baek, A.S. Sefat, D. Mandrus, P.S. Halasyamani, Chem. Mater., 20 (2008) 3785